Asynchronous Zero-copy Communication for Synchronous Sockets in the Sockets Direct Protocol over InfiniBand

P. Balaji, S. Bhagvat, H. -W. Jin and D. K. Panda
Network Based Computing Laboratory (NBCL)
Computer Science and Engineering
Ohio State University

.

InfiniBand Overview

- An emerging industry standard
- High Performance
 - Low latency (about 2us)
 - High Throughput (8Gbps, 16Gbps and higher)
- Advanced Features
 - Hardware offloaded protocol stack
 - Kernel bypass direct access to network for applications
 - RDMA operations direct access to remote memory

04/25/06

Sockets Direct Protocol (SDP)

- High-Performance Alternative to TCP/IP sockets for IB, etc.
- Hijack and redirect socket calls
- Application transparent
 - Binary compatibility (most cases)
- Utilizes IB capabilities
 - Offloaded Protocol
 - RDMA operations
 - Kernel bypass

04/25/06

Sockets APIs Supported by SDP

	Synchronous Sockets	Asynchronous Sockets	Extended Sockets (OSU Specific)*
Communication	Synchronous (Asynchronous	Asynchronous
Operations Outstanding	At most one	More than one	More than one
SDP Implementations	BSDP, ZSDP, AZ-SDP	BSDP, ZSDP	BSDP, ZSDP
Existing Applications	Most	Few	Very few
Potential for Performance	Limited	High	High

(Portions of this table have been borrowed from Mellanox Technologies)

Pavan Balaji (The Ohio State University)

04/25/06

^{*} RAIT05: "Supporting iWARP compatibility and features for regular network adapters". P. Balaji, H. -W. Jin, K. Vaidyanathan and D. K. Panda. RAIT Workshop; in conjunction with Cluster '05

Presentation Layout

- § Introduction and Background
- § Understanding Asynchronous Zero-copy SDP
- § Design Issues in AZ-SDP
- § Performance Evaluation
- § Conclusions and Future Work

Buffer-copy SDP (BSDP)

Several buffer-copy based implementations of SDP exist

- OSU, Mellanox, Voltaire
- HCA offloads transport and network layers
- Copy overhead still present

ISPASSO4: "Sockets Direct Protocol over InfiniBand in Clusters: Is it Beneficial?". P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy and D. K. Panda. IEEE International Conference on Performance Analysis of Systems and Software (ISPASS), 2004.

04/25/06

Zero-copy SDP (ZSDP)

- Implemented by Mellanox
 - RDMA Read based design
- Benefits of zero-copy
- Limited by the API of Synchronous Sockets
 - At most one outstanding communication request
 - Control message latency (50% time for 16K message)
- Intolerant to Skew

04/25/06

Asynchronous Zero-copy SDP (AZ-SDP)

- Basic zero-copy communication is synchronous
 - Data communication accompanied by control messages
 - Communication will be latency bound
- Asynchronous Zero-copy SDP
 - Utilize the benefits of asynchronous communication (more than one outstanding communication operation)
 - Maintain the semantics of synchronous sockets (application can assume that it is using synchronous sockets)
 - Objectives: Correctness, Transparency and Performance
 - Key Idea: Memory protect buffers

04/25/06

AZ-SDP Functionality

- Send returns as soon as communication is initiated
 - Application "thinks" communication is synchronous
- Memory unprotected after communication completes
- If application touches buffer
 - Communication complete: Great!
 - Else PAGE FAULT generated

04/25/06

Presentation Layout

- § Introduction and Background
- § Understanding Asynchronous Zero-copy SDP
- § Design Issues in AZ-SDP
- § Performance Evaluation
- § Conclusions and Future Work

04/25/06

Design Issues in AZ-SDP

Handling a Page Fault

- Block-on-Write: Wait till the communication has finished
- Copy-on-Write: Copy data to internal buffer and carry on communication
- Handling Buffer Sharing
 - Buffers shared through mmap()
- Handling Unaligned Buffers
 - Memory protection is only in the granularity of a page
 - Malloc hook overheads

04/25/06

Handling a Page Fault

- Memory protection needed to disallow the application from accessing an occupied communication buffer
- Page fault generated on access
 - Number of page faults generated are application dependent
- Two approaches for handling the page-fault
 - Block on Write
 - Copy on Write

04/25/06

Block-on-Write

- Optimistic approach to avoid blocking for communication
 - ZSDP blocks during the communication call
 - AZ-SDP delays blocking
- Advantage:
 - Zero-copy communication
 - SDP specification compliant
- Disadvantage:

Not skew tolerant

04/25/06

Copy-on-Write

 Enhances the functionality of Block-on-Write

- Does not blindly block

Advantage:

 Zero-copy communication when possible

Skew tolerant when receiver is not ready

Disadvantage

- Not SDP specification compliant

send() SRC AVAIL Memory App Protect Buffer1 Application Memory touches buffer **Jnprotect** PAGE FAULT Atomic Lock generated 🚣 Atomic Lock App Successful Buffer1 opy to temp. buffer___ SRC UPDATE App Data Source Data Sink

Pavan Balaji (The Ohio State University)

04/25/06

Presentation Layout

- § Introduction and Background
- § Understanding Asynchronous Zero-copy SDP
- § Design Issues in AZ-SDP
- § Performance Evaluation
- § Conclusions and Future Work

04/25/06

Experimental Test-Bed

- 4 node cluster
 - Dual 3.6 GHz Intel Xeon EM64T processors (2 MB L2 cache),
 512 MB of 333 MHz DDR SDRAM
 - Mellanox MT25208 InfiniHost III DDR PCI-Express adapters (capable of a link-rate of 16 Gbps)
 - Mellanox MTS-2400, 24-port fully non-blocking DDR switch

04/25/06

Throughput and Comp./Comm. Overlap

- 30% improvement in the throughput
- Up to 2X improvement in computation/communication overlap tests

04/25/06

Impact of Page-faults

When application touches the communication buffer very frequently,
 PAGE FAULT overheads degrade AZ-SDP's performance

04/25/06

Pavan Balaji (The Ohio State University)

• • • • • •

Presentation Layout

- § Introduction and Background
- § Understanding Asynchronous Zero-copy SDP
- § Design Issues in AZ-SDP
- § Performance Evaluation
- § Conclusions and Future Work

Conclusions and Future Work

- · Current Zero-copy SDP approaches: Very restrictive
- AZ-SDP brings the benefits of asynchronous sockets to synchronous sockets in a TRANSPARENT manner
- 30% better throughput and 2X improvement in computation-communication overlap tests
- Analysis with applications and large-scale clusters
- Integration with OpenIB/Gen2

04/25/06

Acknowledgements

Our research is supported by the following organizations

Current Funding support by

Web Pointers

NBCL

Website: http://www.cse.ohio-state.edu/~balaji

Group Homepage: http://nowlab.cse.ohio-state.edu

Email: balaji@cse.ohio-state.edu